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Abstract
There are some interesting experimental results on cell spreading at
macroscopic scales (cell size) where people have observed various dynamic
phases in terms of rate of spreading of area of adherence to the substrate.
In the present paper, we develop a very simple phenomenological model to
capture those apparent dynamic phases of a spreading cell without going into
the microscopic details of actin polymerization which is the main driving force
for such processes. Our conclusion is that the dynamic phases of cell spreading
depend on some gross parameters of the cell rather than on complex signalling
pathways.

PACS numbers: 87.15.La, 87.15.Rn, 87.17.Jj

Living cells move to perform various activities. While microbes often move in search for
food following a chemical gradient, cells in multicellular organisms are required to move
for immune-activity, healing, preferential positioning, etc. When cells move on a solid
substrate, they move by periodically spreading and contracting themselves. The microscopic
phenomenon acting as a driving force for such motion has been understood to be actin
polymerization [1–4] at the leading edge of the lamellipodium. Lamellipodium is basically
an active gel enclosed by cell membrane. Molecular motors like myosin and many other
proteins play an important role by cross connecting the actin filaments to form a meshwork
and keeping the filaments short and branched. A host of well-connected activities are actually
performed at the microscopic level by several agents to enable the cell to stretch on the
substrate. Particularly, the activity of myosin motors which cross connect actin filaments and
produce localized strains on the meshwork by collectively moving on them are extremely
important for a proper understanding of how such an active gel works [5–7].

Inside the cell, along the periphery of the spreading range, a network of actin filament
grows in outward directions and pushes the cell membrane forward while the actin filaments
predominantly depolymerize at the inner side of the network to supply actin monomers for
the growth of filaments on the outer spreading edge. Basically, due to depolymerization at the
inner and polymerization at the outer edge, a local gradient of actin monomers form which
keeps the process going and the meshwork grows in the outward direction. It has been observed
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that, for the cell to spread properly, the binding of the actin filaments to the substrate on which
it moves is quite important [8]. This binding provides mechanical support to the actin network
and thus helps the system avoid any breakup against mechanical restoring forces developed
in the system as a result of spreading. It also helps the polymerization process by probably
reducing positional fluctuations of the filaments. In this connection, the actin polymerization
based motility of bacterium Listeria monocytogene (LM) and bio-mimetic systems like actA-
coated polysterin beads are worth mentioning [9, 10]. The LM, when invades a cell, captures
the actin machinery of the cell and polymerizes an actin tail on one side of it. The continuous
polymerization of the actins against the cell membrane of LM keeps it moving on the opposite
direction. The depolymerization of the actin tail on the far end creates the local actin monomer
gradient which supplies required actin monomers to the polymerizing end.

With the advent of new powerful microscopy and imaging techniques, people are now
looking at this world of small-scale biological activities at various levels. Particularly in cell
spreading, experimental and theoretical attempts are being made to identify various universal
features associated with the dynamics of spreading cells [11–13]. Although, the process of
cell spreading is a complex and active phenomenon involving complicated bio-mechanical
pathways, efforts are on to look at the problem on the basis of simple physical principles
without involving all the microscopic details. In [12], it has been shown that the normalized
contact area of a spreading cell to its substrate 〈A(t)〉/〈A(t)t→∞〉 is a universal function of time
with a characteristic exponent which depends on the cell type. The exponent α, being a function
of the cell type, reflects differences in the physiology of cell types or probably differences
in the environmental conditions upon which depends the spreading process. Whereas, the
same functional form of α reflects the basic underlying similarity of all the processes. In
[12], a model has also been put forward to calculate the exponents from considerations of
actin polymerization and depolymerization rates based on curvature of cell membrane at the
leading edge, elastic properties of the substrate, etc. Where two distinct dynamic phases
characterize the spreading of cells in [12], in [11] three dynamic phases have been identified
with the spreading of mouse embryonic fibroblasts (MEF) on a fibronectin-coated substrate.
In the present paper, we would propose a phenomenological model in order to account for the
dynamic phases in a spreading cell being based on gross experimental findings without going
into any microscopic details. In the following paragraphs, the experiments in [11] and the
results are first presented in details and then the model has been constructed. The model is
analysed and results presented followed by conclusion. We have concluded that the large-scale
phases of cell spreading probably do not crucially depend on all the microscopic varieties of
the intricate bio-mechanical pathways rather are a manifestation of some gross mean-field
effects of all those molecular level intricacies.

In [11], various dynamic phases of a spreading cell on a suitable substrate have been
investigated and a sequence of transitions between successive dynamic phases been identified
during the process of spreading. In this experiment, MEF cells were allowed to move on a glass
surface coated with fibronectin. Fibronectin is an extra-cellular matrix protein which interacts
with the cytoskeleton (an actin framework inside the cell) of the cell via the integrin receptors
on the cell membrane. As has been mentioned above, this binding of the cytoskeleton to the
extracellular matrix is very important for spreading of the cell by actin polymerization. A total
internal reflection fluorescence microscopy and differential interference contrast microscopy
of the spreading cells revealed three distinct dynamic phases. In the initial phase, the growth of
the contact area of the cell is slow and is seen to be characterized by a small growth exponent
a1 = 0.4 ± 0.2. It has been proposed that during this initial phase the cell basically tests the
suitability of the surface to spread on and once this testing time is over the next phase of rapid
growth follows. This second phase is characterized by a growth exponent a2 = 1.6 ± 0.9. In
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the third phase, the cell boundary shows periodic local contractions and the area of adherence
to the substrate starts to oscillate while the mean area of contact increases very slowly until
it reaches the maximum limit. The growth exponent in this contractile expansion stage is
a3 = 0.3 ± 0.2.

An important observation in [11] is that the cells taken in the experiment could be divided
into two classes depending upon their growth rates in the fastest (middle) growing phase. Let
the area of the cell at the point where the second dynamic phase starts from the first basal
activity phase be A1 and that at the point where the contractile phase takes it up from the
rapid-growth middle phase be A2. All the cells in the experiment were found to belong to two
classes depending upon the ratio A2/A1 < 5 or A2/A1 > 5. In the first class, the exponent
in the middle phase was a2 = 0.9 ± 0.2 whereas for the second class (A2/A1 > 5) it was
a2 = 1.6 ± 0.2. A large error bar appears in the measure of a2 as mentioned in the previous
paragraph due to the fact that its a mean of a2 in these two distinct classes. So, the experiment
suggests that the bigger the maximum area of spread the faster is cell’s growth and this is an
important observation to be noted to write a phenomenological model for such systems.

Let us consider the model in the form
∂A

∂t
= 1

A
+ pB − q

∂B

∂t
= r − A, (1)

where A is the area of the cell in contact with the substrate and B is the total polymerization rate
of actin filaments, or the rate at which the actin meshwork grows. The growth rate of contact
area A should depend proportionately on B since the actin polymerization is the principal
driving force of cell spreading. A bigger area of contact with the substrate will definitely
prevent a further increase in the polymerization rate simply because that will require even
higher supply of actin monomers at the leading edge to maintain itself. This is modelled in
the simplest possible way by making growth rate of B falling proportionately with A. There
can always be other causes like development of stress on the cell membrane which should
try to reduce the growth of B. Since at a larger A, the cell membrane will have a larger
strain the polymerization process against the cell membrane should face greater mechanical
resistance. So, as A increases, it should force B attain some dynamic equilibrium value where
the growth rate of B is on average equal to the rate of degradation or breaking down of the actin
meshwork due to restoring forces developed. Actually the constant r presents this limiting
maximum value of A at which creation and destruction rates of the actin network inside the
lamellipodium are on average the same. The growth rate of the area A should depend on how
big the r is, because a larger r means larger initial growth for the polymerization rate B and that
should make the contact area grow faster, presumably in accordance with the experimentally
observed facts.

The first term on rhs of the equation for growth of the area A stands for the spreading
of the cell by the pressure of the fluid inside exerted at the cell surface in contact with the
substrate. Within the scope of our model, this is the passive spreading term which should
always be there when a fluid like thing is enclosed inside a soft membrane and the system
is acting under gravity if the outer membrane is not enough tight to overcome such a force.
The exponent that has been found in the initial basal-phase of growth of the cells in [11] is
roughly 0.5 and that also indicates the role of such a 1/A term in the initial spreading when
active processes are not on. The pressure at the lower surface is proportional to the height
H of the cell placed on the substrate. Considering the volume of the cell roughly constant,
one has H ∼ 1/A. The second term in the same equation is the one which represents the
active process of cell spreading where p is a constant. As has been mentioned in [11], the cell
initially takes some time to interact with the substrate in order to assess its suitability to be
spreaded on; the constant p in our model has to be set very small to have the active spreading
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Figure 1. Phase portrait showing the spiralling down to the fixed point (A0, B0).

coming into effect when B has grown by a good amount and up to that time the growth will be
dominated by the other terms. The last term, a constant q, stands for the mean-field effect of
all other things that constantly prevent spreading of the cell.

The fixed point of equation (1) is given by A0 = r and B0 = (q−1/r)/p. This fixed point
actually corresponds to the final dynamic equilibrium state of the cell which has spreaded to
the limit where rate of polymerization is equal to the rate of degradation of the actin filaments
due to other forces. This can be easily understood if we do a linear stability analysis about
this fixed point. Perturbing the system as A = A0 + a and B = B0 + b, we have

∂a

∂t
= − a

r2
+ pb

∂b

∂t
= −a. (2)

The growth rate of the perturbation is given by λ = −1/2r2 ±
√

1/r4 − 4p/2, which is
always negative for not very large p. The phase trajectory should spiral down to the fixed point
(A0, B0) so long as p > 1/4r4 and initial values of A and B are far from the fixed point. Such
a phase portrait is shown in figure 1 for p = 0.05, r = 10 and q = 1.0.

The ideal initial values for a numerical investigation of cell spreading on the basis of our
model should be A very small and B = 0. The area of the cell in contact with the substrate is
taken to be small when it is just placed on the substrate. One can also consider that there is a
spreading A0 at the start of the process beyond which the spreading of the cell is effectively
considered in equation (1). We have actually taken A instead of (A0 +A) because the dynamics
will remain the same in the region of our interest even if an extra A0 is added to A. So, starting
from such an initial condition, the trajectories spiral down to the fixed point when p > 1/4r4

and we are interested in looking at the A versus t (t is time) plot on log–log scales. Initially,
when B is very small and p is also very small, the growth rate of the area A will effectively be
given as

∂A

∂t
= 1

A
− q, (3)

which can be solved to get

A +
1

q
log(1 − qA) = −qt. (4)

This equation clearly shows that A grows as t1/2 for small enough A and q in the absence of
contribution from active processes in spreading. This exponent 1/2 corresponds quite well
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Figure 2. Apparent dynamic phases shown by our model on a plot of log of area of contact A

against the logarithm of time t while spreading from an initial state given by Aini = 0.1, Bini = 0.
The parameter values are (a)p = 0, q = 0.01; (b)p = 0.01, q = 0.1; (c)p = 0.01, q = 1.0 and
(d)p = 0.05, q = 1.0 where r = 10 for all the graphs.

with the experimentally given one in [11] a1 = 0.4 ± 0.2. Such a spreading has been shown
in figure 2(a) for r = 10, p = 0 and q = 0.01. Now, keeping p = 0.01, a small number, we
set the parameter q at values 0.1 and 1.0 to plot the same in figure 2(b) and (c). There are
three distinct states of spreading as appear in these figures. The initial phase of a very small
growth rate. In this phase, the active part of our model, i.e. (pB), has hardly any influence on
the spreading process. Next comes a rapid growth phase where the system grows quite rapidly
to a larger surface of contact followed by an oscillatory spreading phase. In the oscillatory
spreading phase, the contact area not only oscillates but there is a small increase in the mean
area of contact with time. This oscillatory growth or contractile growth process is better
reflected in figure 2(d) which has p = 0.05 and q = 1.0.

The better manifestation of the contractile growth with a larger p indicates that the
contractile growth phenomenon is a characteristic of the competition between the active and
other restoring passive processes in the system. In actual experiments, people have seen
periodic breaking down of the actin mesh work at places along the circumference of the
growing surface [4]. Such a local breakdown can happen as a result of development of
mechanical stress as the cell spreads and supposedly due to some myosin density dependent
generic contractile instability [14, 15].

To represent the three different with exponents comparable to those found in experiment,
we have plotted figure 3 for p = 0.001, q = 0.5 and r = 50. We have done linear regression
on the three distinct regions of the curve and have plotted straight lines (marked by crosses)
to help guide eye. The exponents as obtained corresponding to these straight lines are
a1 = 0.26, a2 = 1.65 and a3 = 0.07. Where a1 and a2 are in good agreement with the
experimentally obtained values a3 is a little less. However, a positive a3 actually captures
the contractile expansion within the scope of the very simple mean-field model proposed and
qualitatively represents the third phase of cell spreading.

To see if a bigger final area of contact corresponds to a larger growth exponent in the middle
phase, we have plotted the same graph with r = 50 and r = 10 (by continuous and dashed
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Figure 3. Three distinct dynamic phases are presented for parameter values p = 0.001, q = 0.5
and r = 50. The exponents in the three different phases are a1 = 0.26, a2 = 1.65 and a3 = 0.07.
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Figure 4. The fastest growing phase of a spreading cell is compared for the cases A2/A1 < 5 and
A2/A1 > 5. In the case A2/A1 < 5a2 = 1.08 and in the other case a2 = 1.65.

line, respectively) for p = 0.001 and q = 0.5 in figure 4. The exponents in the middle fastest
growing phase are a2 = 1.65 and a2 = 1.08 for r + 50 and r = 10, respectively. Interestingly,
if we the second fastest growing phase take up from the initial slow phase in both the cases
at around lnA = 0.5 we readily get the lower transition area A1 � 3. Now, quite logically,
we can take A2 = r which results in A2/A1 > 5 for the steeply growing phase (r = 50)

whereas A2/A1 < 5 for the slowly growing one (r = 10) in good correspondence with the
experimental observations. The present analysis also indicates the fact that this increase in the
exponent with the maximum area of contact should happen continuously rather than having
classes of cells characterized by discrete exponents as is apparent from the experiment. This
would be interesting to be further probed by experiments.

To conclude, we would like to mention that, the dynamic phases shown in cell spreading
can easily be understood on the basis of dynamics of some macroscopic quantities and gross
parameters. The detailed understanding of the microscopic-scale activities and their relations
with the macroscopic parameters taken in the model are always important to realize the
interplay between the small- and large-scale effects. However, the information we get by
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qualitatively representing the experimental results with the simple phenomenological model
is that the dynamics at the three different phases are really not that different. It is basically
a spiralling journey to a stable fixed point starting from a far falling initial state. The initial
basal activity phase is definitely very much different from the other two in the sense that the
active part of the dynamics is not appreciably present in that phase, but the middle phase
of steep growth is basically the first half of the first period of oscillatory expansion. In our
interpretation of the model, the high growth rate of the polymerization rate at the beginning
when the contact area of the cell with its substrate is small, is the cause of having this middle
part as a separate phase on the log–log plot of the area against time. For the same dynamics,
if the maximum area attainable by the spreading cell increases, it not only increases the
growth rate of the system in this middle phase but also reveals this middle phase to be a
part of the integral contractile phase as is evident from figure 4. This prediction can also be
checked experimentally to understand the nature of these dynamic phases and assess the role
of large-scale quantities on the controlling of cell spreading.

The phenomenon of cell spreading is definitely not isotropic as has been considered in
the present model. The contractile phase actually shows periodic local contraction along the
circumference of the cell and lateral waves of some universal nature have been observed to
appear at the circumference of the cell at this phase [13]. Our simple isotropic model is really
not in conflict with having local periodic contractions rather the universal spatio-temporal
pattern of the lateral waves at the circumference of various cells indicates their common
macroscopic origin. Thus, we have captured experimentally observed dynamic phases of cell
spreading on the basis of a simple mean-field model. Our analysis leads to the conclusion
that the classification of cells in phenotype depending upon their macroscopic spreading
behaviour crucially depends on the gross difference in the cell types such as elastic nature of
the membranes or binding to substrate for different cell types rather on having subtle difference
in the complex signalling pathways in different cells.
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